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A suspension system based on a band mechanism is investigated to provide the free-

free conditions for ground-based validation testing of fiexible space structures. The

band mechanism consists of a noncircular disk with a convex profile, preloaded by

torsional springs at its center of rotation so that static equilibrium of the test structure

is maintained at any vertical location; gravitational force will be directly counteracted

during dynamic testing of the space structure. This noncircular disk within the

suspension system can be configured to remain unchanged for test articles with

different weights as long as the torsional spring is replaced to maintain the originally

designed frequency parameter of W/ks. Simulations of test articles which are
modelled as lumped-parameter as well as continuous parameter systems are also

presented.

1 Introduction

Satellites have generally been treated dynamically as rigid

bodies during their mission operations. However, interest in

orbiting very large space structures has resulted in the need to
maneuver and control flexible structures. This need is driving

research into both dynamic analysis and experimental verifi-

cation of large flexible space structures under zero-gravity.

Several large flexible space structures presently under inves-

tigation include the Mobile Satellite, the Large Deployable
Reflector, the Freedom Space Station and other SDI weapon

systems. These flexible space structures form the basis for much

of the present need for various forms of preflight testing and

analysis on the ground.
Flexible space structures, in general, experience free-free

boundary conditions that are not readily replicable on earth.

Yet, to conduct the testing of such space structures, special
devices must be introduced. These devices must support the

weight of structures without introducing any constraint forces
which in turn impose boundary conditions that do not simulate

the desired free-free boundary conditions in space. Several

existing approaches and devices have been used or proposed
for suspending low-frequency space structures for dynamic

testing. Some of these, such as long cables, air pads, pneu-

matic/electric device, and springs, have been discussed in Ref.

1. The experimental performances of the prior four suspension

systems have revealed some major inadequacies in their prac-
tical usage, which have also been presented in Ref. 1.
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Fig. 1 Disk suspension system

Figure 1 shows a band mechanism that will be applied as a

suspension system. The dynamic interaction between this sys-
tem and the test article forms the basis of investigation that

is reported in this paper. The system features a noncircular

disk, around which a cable winds and unwinds as the disk
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Fig. 2 Static equilibrium of a test article at twodifferent positions under
disk suspension system

rotates. This disk has a special profile designed in conjunction
with the load it is to suspend, and the torsional spring stiffness
chosen for the system. The torsional spring loads the disk as
the disk rotates so that the torque exerted by the spring about
the disk axis of rotation is exactly counterbalanced by the force
exerted by the weight of the test article on the cable that winds
around the disk. In this way, the suspension system is capable
of keeping the test structure in static equilibrium at any vertical
location so that, on a static basis, the weightless effect of a

test structure in space can be simulated on earth through this
suspension system. A constraint on the system is that the profile
of the disk must be convex to allow the cable to wind around
its edge.

Two test articles have been selected for this investigation.
The first test article, which consists of two masses and one

linear connecting spring, is suspended from an equilibrium
position. Such a lumped-parameter system is thus treated as

a simple two-degree-of-freedom discrete system whose flexi-
bility is characterized by the connecting spring. Another test
article is a flexible steel beam which is hung at its two ends in
equilibrium through two identical band-drive suspension
mechanisms. Simulation of the suspension system with the test

articles originally at rest are carried out with excitations such
as an initial displacement and an initial velocity (impulse) on
the masses. The characteristics of the flexible space structures
are then analyzed in conjunction with this band-drive suspen-
sion system.

2 Concept of the Band-Drive Suspension System

The problem of simulating space environments on earth
inspires the development of many suspension systems that can
counteract the gravitational effect on test structures in the

vertical direction. A concept based on a band mechanism will

be the subject of investigation as to its applicability to dynamic
testing of space structures.

To begin, Figs. 2(a) and (b) show two arbitrary positions of

a test article in static equilibrium suspended under this sus-
pension device. The suspension device consists of: (0 a non-
circular and specially profiled disk (D), (ii) a torsional spring
(S), (iiO a thin cable (C), (iv) a smooth ring (R), and (v) a test
article (W).

Assume that a test article is originally suspended and kept

in static equilibrium at the position shown in Fig. 2(a) with
the thin cable C wrapped around the edge of the noncircular
disk D. This cable passes through the smooth frictionless ring
R, and extends downward to suspend the test article W. To
prevent the cable from driving the disk D and hence unwinding,
a torsional spring S is attached to the axis of rotation of the

disk D such that the torque exerted on the disk D, due to the

load imposed by the test article W, is balanced by the torque

Ts I in the torsional spring S, i.e.,

Wrl = T_l (1)

where rx is the moment arm which is the perpendicular distance

from the disk rotational center to the cable. Then the equilib-

rium equation of Eq. (1) can be further written as

ks(Oso+Ol) = Wrl (2)

where 0so is the angle due to the preload in the torsional spring
S, and 6ri is the rotational displacement of disk D. Note that

this equation provides an explicit relationship between the an-

gle of rotation 01, of the noncircular disk D, and the moment

arm rl. Suppose the test article W is displaced downward a

distance of I1 from its original equilibrium position, as shown
in Fig. 2(a). To enable the test article W to remain in equilib-

rium at this new position, as illustrated in Fig. 2(b), the moment

arm r2 subtended at the axis of rotation of the disk D has to
be larger than the moment arm rl. This is because, to balance
the increased torsional spring torque, while the cable is at the

same tension W, an increase in the moment arm on the non-
circular disk is needed, so that:

Wr 2 --. Ts2 (3)

In this new equilibrium position:

ks( Oso + 02) = Wr2 (4)

where 02 is new rotational displacement of disk D, as illustrated

in Fig. 2(b). Note that the moment arms rl, r2 are not the

radial distances to the points of tangency of the cable at the

disk profile, but are the perpendicular distances from the disk
rotational axis to the cable. Since the moment arm r2 is different
from rl, it is then possible to determine the profile of the

noncircular disk D such that a continuous change in the mo-
ment arm is obtained for any given position of the test article
W, in such a way that when displaced from one position of
static equilibrium to another position, the test article will re-
main in static equilibrium at this new position. That causes a
weightless situation which simulates that in a space environ-
ment.

The static characteristic of the suspension system is thus
governed by Eqs. (1) through (4). Obviously, the noncircular
disk plays a very crucial role in such a suspension system. The
profile coordinates of the noncircular disk will be derived by

using envelope theory [8] in conjunction with the equilibrium

equations given by Eqs. (I) through (4). This will be the subject
of discussion in the following section.

3 Design of the Disk Profile

Envelope theory will be applied to generate the coordinates
of the disk profile given in Fig. 3. Using kinematic inversion,
as the disk rotates as observer fixed on the disk would view

the sequential positions of the cable, as a sequence of straight

trajectories PoTo, PIT1, P2T2 ..... PnT_ as shown in Fig. 3.
The swinging point, P_ (i = 1, 2 .... , n) is observed to lie on

a circular path with a radius r_, which is the distance from the

rotational center O to the ring R. These straight trajectories,

together when taken infinitesimally apart, give the envelope

which forms the disk profile. Assuming that the initial swinging
point P0 is tangent to both the base circle O and the disk profile,

the angle _0, which denotes the starting rotational position of

the string, is given by:
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Fig. 3 Development of noncircular disk profile

Suppose that the string is viewed by the observer at center O,
while the disk rotates through an angle 0. Then the thin cable

will subtend an angle of 60 + 6 with the vertical, at the ring.

The increment angle 6 is the rotational displacement of the

string trajectory PT from its initial orientation. Therefore there
exists a relationship between disk rotational angle 0 and the

string angular displacement 6. This relationship will be derived

using the equilibrium Eqs. (2) and (4). From [2], a general

equation of the family of lines forming the envelope is governed

by a straight line which is:

y =mx + b (6)

where the slope of the swinging string at the disk angular

position O is given by

m = tan(6 + 60 - 0) (7)

and y-intercept of the string PT, based on the cartesian system

in Fig. 3, is

b = r_ cos 0tan(0 + 00- 0) + r_ sin 0 (8)

This general equation of the cable PT in Eq. (7) gives a one-

parameter family of strings as a function of the disk angle of
rotation 0. From the theory of envelopes, an envelope of the

family of the straight lines is governed by an equation:

F(x, y, O)=y-mx-b

=y-tan(6+6o-O)[x+r_ cos 0]-r_ sin 0=0 (9)

Equation (9) is continuous and is a continuously differentiable
function in the coordinates x and y as well as in the variable

0. Differentiating Eq. (9) with respect to the disk angle 0 pro-
vides:

aF 2 [06
--= tan/3(r_ sin 0)- Ix+ r_ cos 0]see 13[-_- 1]a0 \or

-r_ cos0=0 (10)

where/3 equals to _ + 60 - 0. According to [2], the coordinates

of disk profile at a given angle 0 may be obtained by solving

Eqs. (9) and (10), i.e.:

x= -r,[A sin/3+cos 0] (11)

where

A = co__.ss(0+/3) (12)

o_o_l
ao

Substituting Eq. (11) into Eq. (9) provides

y=G[-A sin/3+sin 0] (13)

Initially, the angles 0 and 6 equal zero so that the starting
coordinate of the noncircular disk becomes:

x=-2r, sin (-_), (14)

sin 260
y- (15)

2

which coincides with the point at which the starting string PoTo

is tangent to the base circle in Fig. 3.
The rate of change of the string orientation with respect to

disk rotation, 06/00 can be determined by investigating the

relationship between the angles 6 and 0. Based on Eq. (2) and

illustrated in Fig. 2, the equation of the initial equilibrium is

governed by:

WG sin 6o = ksOo (16)

For the incremental angles of 0 and _, from the initial ori-

entation angles 00 and 00, the new equilibrium state becomes:

Wra sin(6o + 6) = ks (00 + 0 ) (17)

Subtracting Eq. (16) from Eq. (17) provides:

WG[sin(60 + 6) - sin 60] = ksO (18)

which can be rewritten as

¢=sin-t [[ wGkfl+sin _01 -60 (19)

Differentiating Eq. (19) with respect to the angle 0 yields

a6 ks
(20)

ao Wr_ cos(6o+ 6)

Then, the profile of the noncircular disk is determined by

substituting 6 and a6/ao from Eqs. (19) and (20) into the

equations for the disk coordinates given by Eqs. (11) and (13).

Note that the profile of the disk must be convex.

Several parameters are needed to generate the profile of the

noncircular disk, and they include r_, rb, ks, and W. It can

readily be shown that each disk profile can be specified ac-

cording to a parameter which is the ratio of the weight of the
test article to the stiffness of the torsional spring, i.e., W/ks.

This means that if testing is to be conducted for another test

article twice its original weight, the torsional spring stiffness
must be increased by the same factor so that the same disk

can again be used. Such a design, therefore, permits tremen-

dous flexibility since different loads can be used on this device,
without the need to fabricate a new disk every time a new test

article with a different mass, is used.

With the disk profile design, the dynamics of the test articles
can then be suspended on this band mechanism. The dynamics

of these test articles in the presence of a suspension mechanism

will be presented in the next section.

4 Dynamics of Test Articles and Suspension System

In simulating the test experiments of flexible space struc-

tures, the test article may be modeled as a discrete or a con-

tinuous parameter system. Two models of a test article will be
considered: a lumped-parameter model and a continuous pa-
rameter flexible steel beam. In the lumped-parameter model,

the test article will be modelled as two masses and a connecting

linear spring suspended in equilibrium as shown in Fig. 4(b).

Such a lumped-parameter system is thus treated as a simple

two-degree-of-freedom discrete system whose flexibility is

characterized by the connecting spring. In the continuous pa-
rameter model, a flexible steel beam is hung at its two ends

and is suspended through two identical disk suspension sys-

tems, as shown in Fig. 5. Simulation of the ground-based
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validation testing will be implemented by providing the test

article, originally in equilibrium, with the excitations such as
an initial displacement or an initial velocity (impulse). The

characteristics of flexible space structures are then analyzed

together with the band mechanism suspension system.

4.1 Case 1: A Lumped-Parameter Model of a Test Article.
The flexible space structures can be discretized into a series of
lumped-parameter elements. The first test structure in Fig. 4(/7)

illustrates a discrete lumped-parameter system which approx-
imates a flexible structure through the use of two masses and

one connecting spring. The band-drive suspension system is
connected to one of the masses, m_. Notice that the weight W

in Eqs. (16)-(20) stands for the weight due to the sum of the
two masses, so that care is needed while developing the profile
of the noncircular disk for this test article. A derivation of the

dynamic equations willbe discussedbelow.

Assume that mt and m2 are the masses of the two rigid
bodies, k2 the spring stiffness between the two bodies, Ic the

moment inertia of the disk, ks the torsional spring rate and,

r, the distance between rotational center O and the ring R.

Furthermore, the displacements of the two masses are denoted
by/i and 12, respectively, while 0 and {7 denote the angular

displacement and angular velocity of the noncircular disk, and

is the displacement angle of the cable. Then from Fig. 4(b),

the static equilibrium of the test article at any position is gov-

erned by

k,(O+Oo) kilo (21)
W= (ml + m2)g=ro sin (_ + 4_o)-rosin _0

and
mzg = k21s] (22)

where ls_ indicates the static elongation of the spring, Oois the
preloaded angle of torsional spring, and _'o denotes the initial

angular position of the cable. Note that the linear displacement

1_ of mass mj must be consistent with disk angle # since the
suspension cable is directly connected to mass m_. Due to the

convexity of disk profile, the displacement I_, in Fig. 3, can

be equated by integrating along the curvilinear path of the disk

profile through the rotation 0 so that:

0P

It = _ ro sin (_ + Oo)dO = (23)
J 0 W

Note that the displacement 1_of mass m, is a quadratic function
of the disk angle 8. In fact, Eq. (23) shows a function generator

which generates a parabolic curve of the displacement I_ in

terms of 8. Moreover, differentiating Eq. (23) with respect to
time yields

which gives the velocity relation between ]] and 0. Therefore,

the displacement and velocity of mass m_ can be replaced by

the disk angle and angular velocity through the use of Fqs.
(23) and (24).

Applying Lagrange's equation of motion [31, the Lagrangian

function for this system is given by

£ = T- V (25)

where the kinetic energy T and the potential energy V are:

1 ( "2 rks(O+Oo)l 2 1T=-_ _.Lo +m,[ _ -j F+m2i_, , (26)

v=ks(O+o°)Z+_2 W 12- Is]

-mlgk,(_+OoO) (27)

Based on the Lagrangian from Eq. (25), the dynamic equation

of motion in matrix form may be written in the following
form:

M_+ X_= f (28)

where _ denotes the state vector [0/2] r. The inertia, stiffness

matrices, and nonlinear force vector become

K= , (30)

kskZO°w k2 J

f= tfi f2] r, (31)

where

mlgk_(O + Oo)
f]=

W k,k I kF 3k,ksO°+"-'W 012+I'100 2W -_ )

-- m, (0 + 00) (-"_) 2 _2
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The characteristics of such a lumped-parameter model may

then be observed with different initial conditions placed on

the lumped masses. For comparison purposes, the dynamic

responses of the same test article will be re-simulated using the
soft spring suspension system shown in Fig. 4(a). The stiffness

of the soft spring has been chosen to be equivalent to the

torsional spring rate in the disk suspension system, i.e., kl =
ks/r_. The governing linear dynamic equation for the suspen-

sion system in Fig. 4(a) can be found in [4] and will not be

included in this paper. A second model of the test article is

based on a continuous parameter system. The second model

will be the subject of investigation in the section below.

4.2 Case 2: Flexible Steel Beam: (A Continuous--

Parameter Model). The band mechanism suspension system

may be applied for the dynamic testing of continuous param-
eter models of flexible structures as well. Figure 5 demonstrates

a uniform rectangular cross-section steel beam hung on two

identical disk suspension systems at its two ends. Testing of
such a flexible beam is aimed at flexural vibrational behavior.

Assume that the total weight of the flexible beam in static

equilibrium is evenly suspended by two identical disk suspen-

sion systems. Then, the profile of the noncircular disk is de-

veloped using half the weight of the flexible beam when Eqs.

(18) and (20) are applied.
Assume that the rigidity of the flexible beam is given by El

product, its density o, the length L, and the displacement of

the beam at the left end is denoted by Ii. The local coordinates

x] - Y] are located at the left end of the flexible beam for

determining the local deflection of the beam. Modal analysis

technique [5, 6] will be applied to discretize the beam deflection
into a series of fiexural modes. The flexible beam deflects

during bending vibration about its deformed static equilibrium
shape, which is caused by gravity. As will be seen in the sim-
ulation of the beam behavior, only odd modes will be excited

so that the flexural deflection of this floating hinged-hinged

beam in the coordinates xl - Yl is symmetrical about its center

of this floating gravity. A setup of such a system is shown in

Fig. 5.
The displacements and velocities of the flexible beam at two

ends can be substituted by the disk angle 0 and angular velocity
0 in Eqs. (23) and (24) derived in the lumped-parameter system.
For the flexible beam, as shown in Fig. 5, the kinetic energy

T and the potential energy V can be expressed as:
L

2T=2/c02+ f pIi]-yd-li_-SllaX, (32)
0

Moreover, the distributed coordinates are expanded in a or-

thogonal basis of assumed mode shapes so that:

T = [_] ..... _n]; (34)
Yl(Xl, t)=_r(xl)q(t), and

qT= [ql .... q,]

where _b(x]) is a vector of assumed mode shapes relative to

spatial coordinates derived from the hinged-hinged boundary

condition problem, q (t) is a generalized coordinate vector [5,
6], and n is the number of assumed modes.

Inserting Eq. (34) into Eqs. (32) and (33) yields

2T=2IcO2+oLi2+ _ _ mjl_/tj-2 _ h,/t_i_, (35)

i=l j=l i=l

2 V = 2ks[O + O0]2 + _ Koqiqj (36)
i=l j=l

where
L L

m6= I o P_i(Xl)_j(Xl)dXl' hi= fo P_i(x1)dXl'

feE1 o2_i 02_/ dxl fori, j=l 2, n
ri:= J0 O-_lOx_ OxlOxx .....

Therefore, the Lagrangian for the system, as given by Eq.

(25), can then be obtained. From Eqs. (35) and (36), the dis-

placement and velocity at the beam ends are converted into

the angular displacement and angular velocity of the disk. To

simplify the state variables in the above equations, denote _0

= O, _i = qi, for i = 1, 2 ..... n. Using the Lagrange's
equations of motion [3], the equation of motion of the system

may be written in the same way as Eq. (28), where the state
vector _r = [0, q_, q2 ..... q,], and the inertia matrix M, the
stiffness matrix K, and the nonlinear force vector f are given

M _

by:

2 ]2Ic + 4pL [0 "+ 00] 2 2k_[O'-_WO'°]hr

2ks[Ow+ Oolh pL[ J

(37)

K = Diag[0, pLw2]; w= Diag[_l ..... w,], (38)

-4pL [0+0010 _
f = (39)

2ksO2h

where [is an n x n identity matrix and t0i (i = 1, ..., n) is

the modal frequencies associated with the hinged-hinged shape

functions ff_(x_) used in discretizing the deflection of the flexible

beam.

5 Simulation Results

The dynamics of test articles have been derived in the pre-
vious section, and they include a lumped-parameter system as
well as a continuous-parameter system. For each test article,
two different excitations to the system will be implemented.

The first is with an initial displacement and the second with
an initial velocity, with a total of four simulations to verify
the feasibility of this disk suspension system. A soft spring
will be employed as a suspension system [see Fig. 4(a)] for the
lumped-parameter system, and its simulations are then com-

pared to those on the disk suspension system.
A convex profile of the noncircular disk is constructed by

evaluating Eqs. (11) and (13). Figure 6 shows the resulting

profile of the noncircular disk, with spokes used to minimize
its moment of inertia. The disk radius varies from 3.0 inches

to 9.5 inches. Within the disk thickness, a groove has been cut

along the edge of the disk for winding the cable. The range
of disk rotation based on the constructed profile is approxi-

mately 200 degrees. Such a noncircular disk, as shown in Fig.
6, will be used to implement the following dynamic simulations.

5.1 Simulations of the Lumped_Parameter Model. The

model parameters of a lumped-parameter system are given as:
ra = 12 in, rb = 6 in, ks = 0.5 lb/rad, Ic = 0.01 lb - in 2,

ml = m2 = 12 Ib, and k2 = 1 lb/in. Two kinds of suspension

systems, a band mechanism and a spring suspension system,
will be used. In the first simulation, -0.2 inch and 0.2 inch

of initial displacements are specified to masses #1 and #2,
respectively, but with no initial velocity. Figures 7(a)-7(.f) are
the simulation results of the two suspension systems. The re-

sults associated with the disk suspension system are indicated

by a solid line, while those of the spring suspension system are

indicated by a dotted line. Figures 7(a) and 7(b) show the
angular displacement and angular velocity of the disk, re-
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spectively, of the disk suspension system. Both angular dis-
placement and angular velocity fluctuate with the natural

frequency of the test article. The displacement and velocity of

mass #I are respectively shown in Figs. 7(c) and 7(d), while

the displacement and velocity of mass #2 are given in Figs.

7(e) and 7 (f), respectively. All the trajectories of masses #1
and #2 represent pure oscillatory motions about their equilib-
rium positions. The cable which connects the test article to the

disk is found to be always in tension. It can be seen that there

is no difference between disk suspension system and the simple

',, )i "x /

Fig. 8 Profile of noncirculer disk

spring system under specifications of initial displacements. The
spring in the spring system may be too soft due to the equivalent

relationship, k_ = kirk, so that it may not be able to suspend
heavy test articles. The spring stiffness for this spring suspen-
sion system cannot be arbitrarily increased because that will

distort the natural frequency of the test article. The initial-

displacement results provide an insight in verifying the validity

of a disk suspension system when compared to the conventional

spring suspension system. It also shows that the results cor-
respond to the anticipated vibrational characteristics of mass

#I and #2 in space.
The second simulation of a lumped-parameter system deals

with the dynamic response subjected to an initial velocity spec-
ification. An initial velocity of 2.0 inches per second acts on

mass #2 to excite the whole system to move as if under an

impulse. Figure 8(a) shows the dynamic history of the disk

angle. It has an oscillatory motion superimposed on the drop-
ping angular displacement trajectory. Figure 8(b) illustrates

this oscillatory motion of the disk but with an average angular

velocity of 9.5 deg/s, superimposed upon that oscillation. The
displacements and velocities of masses #1 and #2 are shown
in Figs. 8(c)-(f). In Figs. 8(c) and 8(e), the solid lines asso-
ciated with the disk suspension system show that the entire

test article is dropping at a constant velocity, while mases #1
and #2, which model the test article, are oscillating during this
downward motion. This shows that with the use of this disk

suspension system the impulse response indeed corresponds to
that in a zero-gravity condition. Figures 8(c) and 8(e), on the

other hand, show that the spring suspension system does not
satisfy this anticipated motion trajectory of the test article
(masses). The velocities of the masses shown in Figs. 8(d) and

8 (f) confirm that the masses in the disk suspension system,
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Fig. 7 Simulation results of a lumped-parameter model for the exci-
tation o! the initial displacement

Joumal of Mechanical Design MARCH 1995, Vol. 117 1 139



2OO

160

_ 120

_ 80
<

40

.... , • . . , .... , ....

5 10 15
Time (see)

(a)

A: Disk suspensie¢a systemS:Springsuspensionsystem

.[VttVVVVVVVV.VV
: .s_ .... _ " " ]'o .... 1'5.... 2

Time (see)
(b)

3O

:a: 25
20

E 15
,$

_10w

_ 0

.lo_.... _ .... i'o.... is....
Time (see)

(c)

5

4

3

"a-_i

o -I

0 "q ' ' " " 5 .... 1'0.... i'5 ....
Time (see)

(d)

3O
2s

E I

E

.1(

.... ' " " " • .... • " " ' S

4

_- 2

_" -2

.... g .... i0.... is .... 20
Time (see)

(e)

' ' "5 .... I'0.... 1'5....
Time(see)

(O

Fig. 8 Simulation results of a lumped-parameter model for the exci-
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on the average, do not accelerate. The pure oscillations of both

the mass velocities indicate an average constant velocity of 1.0

in/s (fluctuating between 2.0 and 0.0 in/s), implying that the

constant velocities are indeed due to the impulse response. This

implication shows that the entire test article beneath the disk
suspension system is not accelerated due to the initial impulse.

Such a phenomenon is consistent with the behavior deduced

from mass displacements in Figs. 8(c) and 8(e). Note that the

masses oscillate at 180 degrees out of phase with each other.

These figures also prove that the simple spring suspension

system does not result in a correct motion for the masses in

response to an initial impulse.

Figures 8(a)- (f) thus ensure that this disk suspension system

is capable of simulating the dynamic behavior of the test article

subjected to an impulse. The test body, accordingly, translates
at a constant velocity. When the mass is imposed with an initial

velocity Vo, (equivalent to an impulse) the test article will con-
tinue to travel at that same velocity, vo, over a considerable

range of travel. This is because the tension in the cable is

constant and is exactly equal to the weight of the test article,
so that there is no net driving force on the article during its

entire range of motion. With that observation, it therefore

leads to a constant velocity of the test article, and in so doing,

very nearly simulates the motion of an object in space.

5.2 Simulations of the Flexible Steel Beam. In this sim-

ulation experiment, two identical disk suspension systems are

employed to suspend a flexible beam that has the same weight
as in the himped-parameter model of the previous section. The

model parameters of a flexible steel beam are specified by: L

= 6.562 ft, El = 74.8953 Ib-ft 2, p = 0.3048 Ib/in, and h =

1.614 x 10 -2 in. Three hinged-hinged flexible modes will be
assumed for the flexible steel beam. A free-free flexible beam

in space has also been simulated under the same excitations

for comparison with those using the disk suspension systems.
In this simulation, the first and third modes will be specified

with initial values. This means that the flexible beam is orig-

inally bent into a symmetric deformed configuration about its

static equilibrium configuration, and then released from rest.

Hence, the first and third modes are excited by this initial
deformation. The simulation results are given in Figs. 9(a)-

(f). Solid lines denote the results under the disk suspension

systems, and dashed lines indicate those for a free-free flexible
beam in space. Figures 9(a) and 9(b) show the angular dis-
placement and angular velocity of the disk, while Figs. 9(c)

and 9(d), the deflection and velocity of the beam at its center
of gravity. Figures 9(e) and 9(f), on the other hand, show the

deflection and velocity respectively of the beam at both ends
of the beam. The odd modes, as anticipated, are very active

as can be seen from results of displacement and velocity in the

figures. This is due to the symmetry of the deflection about a

plane through the center of gravity of the beam. In Fig. 9(c),

the displacement at the e.g. of the beam implies that the beam

oscillates about its original static equilibrium configuration

during the process. It can be seen that the initial displacement
response for the free-free beam in space and that suspended

by disk suspension systems on the ground, superimpose. This

implies that the disk suspension systems can simulate the initial
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Fig. 9 Simulation results ol a flexible steel beam for the excitation of

Ihe initial displacement

displacement response of the free-free flexible beam in space.
Hence, the multi-mode vibration of a flexible beam can be

implemented under the disk suspension system.
Finally, a fourth simulation has been conducted with the

flexible beam subjected to an initial impulse. Similarly, the
response of a free-free flexible beam in space is achieved by

imposing the same initial impulse on the beam. Simulation
results are shown in Figs. 10(a)-(f) which include the disk

angle, angular velocity of disk, displacement and velocity of
the e.g. of the beam, and displacements and velocities of the

end points of the beam. The third mode is more pronounced

in the velocity plots and the amplitude of the beam deflection

at the center of gravity is larger than those at both ends. The

linear slope in the oscillatory behavior in Figs. 10(c) and lO(e)

indicates a constant-speed motion associated with a rigid-body
mode. The flexible beam is moving upwards at a constant speed
while simultaneously vibrating with respect to the local co-

ordinates x_ - Yx- The constant speed is approximately 0.7

in/see. In fact, these impulse results of a beam imply a com-

pound motion of the flexible space structure that includes a

constant-speed rigid-body motion with flexible-body vibration

superimposed on it. The results show that vibrational char-
acteristics of a free-free flexible beam are similar with those

using the disk suspension systems. The inertia of the noncir-
cular disk may be the reason for small deviation of the impulse

response in the disk suspension systems, from that in space.

The impulse response of a flexible structure has shown to

be consistent in the use of this disk suspension device. The

entire test structure will travel at a constant velocity with a

rigid-body motion, while the traveling beam oscillates, with

its flexible modes, about the moving local coordinate system.
The similarities of the second and fourth simulation results

validate the applicability of this disk suspension system for
both discrete and continuous models.

6 Conclusion

In this article, a band mechanism design has been presented
that is to be used as a ground-based suspension system to assess
the characteristics of flexible space structures that operate in
a weightless environment. This mechanism is characterized by

a noncircular disk with a convex profile constrained into ro-
tational motion, by a torsional spring. The suspension system
is constructed to counteract the weight of the test article by

using a specially constructed disk prof'de in conjunction with

an appropriate torsional spring. The basic principle behind this

suspension system is to maintain static equilibrium of the test

article at any given vertical position. Envelope theory has been
applied to the determination of the convex profile of the disk.

It has also been shown that this suspension system is applicable

for test articles with the different weights without the need to

change the disk profile; the torsional spring rate has to be
adjusted to maintain the static equilibrium condition of the
new test article.

This mechanism has shown, under numerical simulation, to

be applicable and suitable for ground-based dynamic testing
of test articles, be they discrete or continuous models. Two

kinds of test articles have been chosen for the simulation, a
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flexible steel beam for the excitation

mass-spring system as a lumped-parameter model, and a flex-
ible steel beam as a continuous parameter system. The lumped-
parameter element is composed of two masses and a connecting
spring which provides a single-mode vibration. Simulation re-
sults indicate that the characteristics of the flexible space struc-
tures can be precisely tested under this disk suspension system.
It has also shown to be capable of permitting a constant-speed
motion superimposed with flexural vibration in an impulse
response. These simulation results provide very useful insights
in building an experimental setup at NASA Langley.
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